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Abstract

Ready access to physiologic measures, including respiratory mechanics,
lung volumes, and ventilation/perfusion inhomogeneity, could optimize
the clinical management of the critically ill pediatric or neonatal patient
and minimize lung injury. There are many techniques for measuring
respiratory function in infants and children but very limited information
on the technical ease and applicability of these tests in the pediatric and
neonatal intensive care unit (PICU, NICU) environments. This report
summarizes the proceedings of a 2011 American Thoracic Society
Workshop critically reviewing techniques available for ventilated and
spontaneously breathing infants and children in the ICU. It outlines for
each test how readily it is performed at the bedside and how it may
impact patientmanagement aswell as indicating future areasof potential

research collaboration. From expert panel discussions and literature
reviews, we conclude that many of the techniques can aid in optimizing
respiratory support in the PICU and NICU, quantifying the effect of
therapeutic interventions, and guiding ventilator weaning and
extubation. Most techniques now have commercially available
equipment for the PICU andNICU, andmany can generate continuous
data points to help with ventilator weaning and other interventions.
Technical and validation studies in the PICU and NICU are published
for the majority of techniques; some have been used as outcome
measures in clinical trials, but fewhavebeenassessed specifically for their
ability to improve clinical outcomes. Although they show considerable
promise, these techniques still require further study in the PICU and
NICU together with increased availability of commercial equipment
before wider incorporation into daily clinical practice.
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Overview

The American Thoracic Society (ATS)
workshop on Evaluation of Respiratory
Mechanics and Function in the Pediatric
and Neonatal Intensive Care Units was

funded by the ATS and was held at the 2011
ATS International Conference meeting in
Denver, Colorado, with a follow-on meeting
at the 2012 ATS Conference. The workshop
was initiated by the joint ATS/European
Respiratory Society Working Group on
Infant and Young Children Pulmonary
Function Testing to address the lack of
information on respiratory function
techniques available to assist in the
management of patients in pediatric
and neonatal intensive care units (PICU,
NICU).
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The principal conclusions are as
follows:
d The main clinical issues for which
respiratory function measurements can
provide useful information to guide
management are:

∘ assessing the physiologic nature and
progression of respiratory disease

∘ optimizing respiratory support and
minimizing ventilator-associated lung
injury

∘ assessing the effect of therapeutic
interventions (e.g., drugs, physiotherapy)

∘ assessing readiness to wean from
respiratory support

d The techniques considered currently
useful or promising in providing this
information are:

∘ measurement of respiratory mechanics
(compliance and resistance of lung or
respiratory system) using both dynamic
and passive techniques

∘ measurement of forced expiratory flows
and volumes using the negative pressure
forced deflation technique

∘ measurement of respiratory resistance
and reactance using the forced
oscillation technique (FOT)

∘ use of ventilator graphics to provide
qualitative visual information (both
time-based and XY plots)

∘ measurement of carbon dioxide
elimination as a function of exhaled
volume of gas (volumetric capnography)

∘ measurement of lung volumes and
ventilation distribution using inert gas
washout techniques

∘ dynamic assessment of regional
ventilation using electrical impedance
tomography

∘ measurement of tidal volumes, flow
parameters, and thoracoabdominal
asynchrony at the chest wall
(6simultaneous esophageal manometry)

∘ assessment of respiratory drive and
respiratory muscle strength using
occlusion pressures

d All of these techniques are feasible and
have been performed in PICU/NICU
settings.

∘ Suitable commercial equipment is
currently available for all techniques
except FOT, forced deflation, and
occlusion pressures.

∘ Adequate training and quality control are
essential before any of the techniques
are introduced into a PICU or NICU
setting.

∘ Once equipment is in situ, each technique
can be performed within approximately
15 minutes on each patient, and some
can give continuous real-time data
during supported ventilation.

∘ Additional time needs to be allowed for
equipment setup, to await patient
stability, and for calculation/
interpretation of results; this will depend
on the technique, the child’s clinical
condition, and the experience of the
operator.

∘ Risks are minimal, but the following
precautions are important:

- infection control issues must be addressed
- awareness of increased dead space during

some types of measurement
- disconnection times must be minimized

to avoid derecruitment in positive end-
expiratory pressure (PEEP)–dependent
patients

d There is a wealth of published data on
the validity and technical aspects of the
various techniques. Most techniques
have been used as outcome measures in
studies on therapeutic interventions.
Empirical data on the ability of these
measurements to assist in clinical
management of individual patients are
scarce: available data are restricted
primarily to respiratory mechanics
measurements, ventilator graphics, and
volumetric capnography.

Introduction

Respiratory disease dominates admissions
to both pediatric and neonatal intensive
care units (PICU, NICU) to a greater
extent than equivalent adult units (1).
Nonetheless, the use of respiratory
measurement techniques to guide
management in children has lagged behind
adult intensive care practices. Rapid
advances in the development of respiratory
function tests applicable to infants and
young children have been achieved in
recent years.

Since its establishment in 1990, the
joint American Thoracic Society/European
Respiratory Society (ATS/ERS) Working
Group on Infant and Young Children
Pulmonary Function Testing has published
several statements and guidelines on the use
of pediatric respiratory function tests for
researchers and clinicians (2–14), but to
date these publications have focused on the

stable child in the outpatient or ambulatory
setting. Discussions within and beyond the
Working Group in 2010 to 2011 indicated
(1) the availability of respiratory
measurement techniques potentially
applicable in pediatric intensive care
unit/neonatal intensive care unit
(PICU/NICU), and (2) a desire by
clinicians to know more about these
techniques. These discussions led directly to
an ATS-funded project: “Evaluation of
respiratory mechanics and function in the
pediatric and neonatal intensive care units.”

The aim of this Workshop Report
document is to identify and concisely review
respiratory function tests that show themost
promise for the clinical monitoring of
vulnerable and critically ill young patients,
requiring care in a PICU, NICU, or similar
facility. The objectives were to (1) review the
safety, feasibility, and published data to date
on the relevant techniques; (2) list possible
applications to guide clinical management
in the PICU and NICU; and (3) identify
future directions and research needs. Use of
such techniques in the PICU and NICU
may benefit patients through enhancing
optimization of ventilator management and
monitoring the response to therapeutic
interventions. In addition, measurements
can form a baseline to aid with monitoring
evolution of respiratory disease both acutely
in the PICU/NICU and at follow up.

Finally, it should be stressed that
despite the potential clinical benefit many of
these tests may provide, more research is
warranted for each technique before any
clinical recommendations on specific ages,
disease entities, or outcome measures
associated with testing. We aim to provide
the pediatric and neonatal intensivist with a
guide for choosing potential respiratory
function tests and information regarding
future research areas of interest, specifically
bedside evaluations of lung volumes,
ventilation inhomogeneity, and respiratory
mechanics in ventilated patients.

Methods

This project originated in a Clinical
Workshop run at the American Thoracic
Society Annual Conference in New Orleans
in 2010 (May 18, 2010) entitled “Making the
Physiology Work for You: Lung Function
Tests in the Pediatric and Neonatal
Intensive Care Units.” This educational
workshop was proposed by the ATS/ERS
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Working Group on Infant and Young
Children Pulmonary Function Testing and
was organized and chaired by S.P.-C. and
P.C.S. Formal feedback was sought from
the 45 attendees: the responses indicated
the need for increased knowledge of the
various techniques available and how these
might influence clinical practice.
Participants expressed a desire to have
information regarding the application and
interpretation of data from these various
techniques. Furthermore, they noted that
there was limited published information on
the clinical applicability of lung function
techniques in the PICU/NICU settings.

Consequently, we submitted an
application to the ATS on behalf of the
Working Group for a project entitled
“Evaluation of respiratory mechanics and
function in the pediatric and neonatal
intensive care units.” P.C.S. and S.P.-C.
contacted members of the ATS/ERS
Working Group on Infant and Young
Children Pulmonary Function Testing to
collect opinion on (1) techniques to assess
respiratory function that have been used in
PICU/NICU, and (2) relevant experts who
could contribute for each technique.

A provisional list of techniques was
drawn up, and the identified experts for each
technique were invited to a workshop at the
ATS Annual Conference in Denver in 2011.
The workshop was attended by advisors
from the Working Group to give an
overview, together with a technical advisor
and a librarian from the ATS. Data for the
various techniques were presented, and the
scope and overall plan of the document was
discussed. At the end of the workshop,
attendees agreed on the finalized list of
techniques to be covered within the
document. For each technique, a subgroup
of individuals was then tasked with
searching the literature for evidence on each
of the techniques to address the following
issues:
1. Background physiology of the technique
2. Logistics and procedural requirements:
a. What equipment is needed?/technical

specifications
b. What technical data are gathered/

presented/available?
c. Variability, including interrater/

intrarater, repeatability within/between
occasions

3. Feasibility
a. Availability of commercial equipment/

approximate costs

b. How long do measurements take to
obtain?

c. Any risks to patient?/Which patients are
suitable/unsuitable?

d. Ease of interpretation/training required
4. Existing published data
a. Reference data
b. Data in disease conditions outside

NICU/PICU
c. Research studies to date in NICU/PICU
5. Clinical Indications based on published

data

The ATS/ERS Evaluation of
Respiratory Mechanics and Function in the
Pediatric and Neonatal Intensive Care Units
writing group was created, consisting of
working groups for each of the physiologic
parameters to be evaluated. Each working
group was charged with performing a
comprehensive literature search of
standardized content for its specific lung
function test, including background
physiology, procedural requirements,
procedural feasibility in a clinical setting,
and existing published data with possible
clinical indications.

Thorough literature searches were
performed on multiple occasions up to
finalization of the Workshop Report by the
members of the subgroups using the
following databases: MEDLINE, PubMed,
and EMBASE. Initial searches and topic
reviews by the individual subgroup/
section authors were often done with the
aid of medical librarians at each author’s
individual academic institution. Studies
and reports relevant to the subgroup’s
assigned physiologic technique were
selected, and reference lists of identified
studies were further perused for
additional relevant studies.

Subsequent follow-on meetings were
held at ERS 2011 and ATS 2012, at which
each subgroup presented its findings, which
were then collated and discussed. Further
work was done at these workshops to
address overarching issues of topic
relevance, study methodology, outcome
measures, and clinical applicability. Table 1
is a checklist summarizing the methods
used. Conflicts of interest were disclosed,
vetted, and managed in accordance with
ATS policy and procedures. The Workshop
Report was written by the co-chairs (P.C.S.,
S.P.-C., and S.C.R.) then modified with
detailed feedback from the workshop
participants. The online supplement
consists of the detailed sections on

individual techniques, written by the
participant subgroups and then collated
and edited by the co-chairs.

Measurement Techniques

The measurement techniques are
described briefly for the clinician. The
online supplement includes detailed
sections on each reviewed technique and
references.

Dynamic/Passive Mechanics
These techniques use classical mechanics
to derive measurements of the resistance
and compliance of the lung or the entire
respiratory system (i.e., including chest
wall). Airflow is measured at the airway
opening (usually endotracheal tube or
facemask) using a pneumotachometer
or ultrasonic flowmeter and integrated
to give volume changes. The pressure
driving airflow (the driving pressure)
is estimated in a variety of ways. In
dynamic mechanics, the driving pressure
is measured continuously. For the
spontaneously breathing child, driving
pressure is generated by respiratory
muscles creating a negative intrapleural
pressure; this is measured via a
catheter, balloon, or transducer in the
midesophagus. For the ventilated and
paralyzed child, the driving pressure is
positive pressure at the airway opening,
measured within the ventilator circuit
as close as possible to the airway
opening. Flow and volume are measured
continuously and simultaneously to
driving pressure.

For passive mechanics, driving pressure
is measured during a brief airway occlusion,
when respiratory muscles are relaxed
(Hering-Breuer reflex) and pressures
equilibrate across the airways during a
period of no flow. Flow and volume are
measured during the passive expiration
(respiratory muscles still relaxed) that
follows release of the occlusion.

In both dynamic and passive
techniques, these values of flow, volume, and
driving pressure are used to solve the
equation of motion of the lung and yield
values for compliance and resistance. For
situations where airflow cannot be measured
accurately, a variant of dynamic mechanics
uses esophageal pressure measurements
alone to derive measures of respiratory
effort (e.g., amplitude or amplitude-time
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product of esophageal pressure swings).
This is referred to below as esophageal
manometry. This technique is sometimes
used in combination with chest wall
measurements (see below).

Forced Deflation
Forced deflation is essentially a form of
spirometry for the intubated, ventilated
child, aiming to produce a maximal
expiratory flow-volume curve. For the test
procedure, the lungs are first inflated by
manual ventilation to 140 cm H2O
inflation pressure (defined as the total lung
capacity). After the inflation pressure is
held static for at least 3 seconds, the lung is
deflated by applying a constant negative
pressure of 240 cm H2O to the
endotracheal tube until expiratory flow
ceases. The rapid deflation produces
reproducible maximal expiratory
flow-volume curves demonstrating flow
limitation, from which measures including
FVC and maximal expiratory flow at 25%
and 10% of FVC are derived.

Forced Oscillation Technique
Forced oscillation technique (FOT) is an
alternative technique for measuring
respiratory system mechanics, in which a
high-frequency driving pressure waveform

is superimposed on the tidal (spontaneous
or ventilator-driven) breathing pattern. The
resulting high-frequency changes in flow
and volume are separated out from the tidal
flow/volume changes by signal processing.
Pressure, flow, and volume changes are then
used to calculate the resistance and
reactance (and the combined measure,
impedance) of the respiratory system at the
imposed frequency. The technique is also
performed at low frequencies during apneic
pauses (essentially equivalent to dynamic
mechanics as described above in the
ventilated, paralyzed child). Alternatively,
measurements can be made during
high-frequency oscillatory ventilation, when
the imposed high-frequency waveform
temporarily replaces the ventilator
waveform.

Ventilator Graphics
Ventilator graphics refers to the real-time
display of continuous measurements of
pressure, flow, and volume change on a
screen at the bedside, either as time-based
plots or as XY loops (e.g., flow–volume or
pressure–volume). Rather than yielding
numerical variables, pattern recognition is
used to identify specific pathophysiological
situations—for example, small airway
obstruction (flow–volume loop) or

excessive inflation pressure
(pressure–volume loop). In conjunction
with ventilator graphics, additional
information can be obtained by plotting
esophageal pressures (obtained by
esophageal manometry), as mentioned in
Tables 2 and 3.

Volumetric Capnography
Capnography describes the continuous
display of carbon dioxide (CO2) partial
pressure in expired breath—widely used
clinically in, for example, end-tidal CO2

monitoring. Volumetric capnography
combines end-tidal CO2 monitoring with
continuous flow (and hence volume)
measurement, to provide a continuous
measure and visual display of quantity of
CO2 eliminated and how it relates to
expired breath volume. The measurements
are used to estimate anatomical and
physiological dead space and ventilation
effectiveness, whereas pattern recognition
of displayed waveforms is used to identify
pathophysiological problems (e.g., airway
distension due to excessive positive end-
expiratory pressure, esophageal intubation).

Inert Gas Washout
This technique measures how an inert gas
marker (artificially introduced [SF6, He] or
naturally present [N2]) is eliminated or
“washed out” from the lungs. The
measurement applicable to PICU and
NICU is performed during a period of tidal
breathing (ventilator or spontaneous) and
is hence called multiple breath washout
(MBW). For SF6 or He, the gas is first
washed into the lungs by adding it to the
inspired air. For N2, the gas already present
in the lungs is washed out by breathing
100% O2. Inert gas concentration in expired
breath is measured continuously using a
mass spectrometer or ultrasonic flowmeter,
and expiratory airflow and/or volume are
measured using a pneumotachometer
or ultrasonic flowmeter. The total inert
gas volume washed out allows the
measurement of lung volume (FRC), and
the rate at which it is washed out yields
measures of gas mixing efficiency (e.g., lung
clearance index), a marker of ventilation
inhomogeneity that is sensitive to small
airway disease.

Electrical Impedance Tomography
Electrical impedance tomography (EIT) is a
radiation-free dynamic imaging technique
that transmits very small alternating

Table 1. Methods used in producing this Workshop Report Document

Panel assembly
Included experts from relevant clinical and
nonclinical disciplines

Yes

Included an individual who represents views of
patients and society at large

No

Included methodologist with appropriate
expertise (documented expertise in
development of conducting systematic reviews
to identify the evidence base and development
of evidence-based recommendations)

Applicable only to clinical
practice guidelines

Literature review
Performed in collaboration with librarian No
Searched multiple electronic databases Yes
Reviewed reference lists of retrieved articles Yes

Evidence synthesis
Applied prespecified inclusion and exclusion
criteria

Yes

Evaluated included studies for sources of bias No
Explicitly summarized benefits and harms Yes
Used PRISMA1 to report systematic review Applicable only to systematic

reviews
Used GRADE to describe quality of evidence Applicable only to clinical practice

guidelines
Generation of recommendations
Used GRADE to rate the strength of
recommendations

Applicable only to clinical practice
guidelines

Definition of abbreviations: GRADE =Grading of Recommendations Assessment, Development, and
Evaluation; PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
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electrical currents through the lungs from a
belt-like array of electrical transmitter/
receivers around the outside of the chest
wall. The resulting voltages are used to
construct a two-dimensional “slice”
showing the distribution of electrical
impedance throughout the chest at that
level. Because the major factor in
determining impedance in any area of lung
tissue is the air content, the image maps out
the relative distribution of air in the lungs
at that time point. By taking repeated scans
(up to 50 per second) during tidal
breathing, a measure of total and regional
ventilation of the lungs is obtained.
Although absolute lung volume is not
measured, relative changes in end-
expiratory volume are estimated from the
cross-section sampled.

Chest Wall Measurements
Chest wall measurement techniques
involve assessment of tidal breathing by
estimating change in volume of the
chest at the chest wall, rather than by
airflow at the airway opening. Chest
wall measurements are useful in the
sick but nonintubated child, in whom
measuring flow at the airway opening
is impracticable. The best known
technique is respiratory inductance
plethysmography, which measures
changes in the cross-sectional area of the
chest by changes in inductance in coils
bearing weak current around the chest
and abdomen. As well as giving a measure
of changes in overall tidal volume,
the time lag between abdominal and
chest excursions (thoracoabdominal
asynchrony [TAA]) is used as an
indirect measure of work of breathing. A
number of newer chest wall techniques,
using for example electromagnetic
inductance or light reflection, are now
available.

Occlusion Pressures
Occlusion pressure techniques focus on
the respiratory muscles and central
respiratory drive rather than respiratory
mechanics, lung volumes, and gas
exchange. Pressure at the airway opening
during a complete airway occlusion will
tend to equilibrate with alveolar pressure.
The negative pressure developed after 100
ms of occlusion (P0.1) is a measure of
respiratory drive, because it reflects the
alveolar pressure that would have been
developed by the respiratory muscles in an

unobstructed breath (100 ms is too short
a time to allow a response to occlusion).
By contrast, maximum inspiratory
pressure (PImax) is the maximum negative
pressure measured at the airway opening
during an occlusion sustained for a
number of breaths (usually five to seven)
and is used to estimate respiratory
muscle strength. In the cooperative child,
maximal effort is requested; in the infant
it is inferred. Table 2 summarizes the
potential of each technique for assessing
important clinical issues in the PICU or
NICU.

Discussion and Future Directions

The respiratory function techniques
reviewed in this document could aid in the
clinical management of individual
patients in the PICU and NICU setting.
Specifically, they could potentially help
pediatric and neonatal intensive care
clinicians to identify the nature of
respiratory disease, optimize respiratory
support to minimize ventilator-associated
lung injury, assess the effect of therapeutic
interventions, and assess readiness to
wean from ventilatory support.
Commercial equipment is now available
for most of the aforementioned
techniques; measurements are obtained
quickly to avoid undue interference with
clinical care, and patient risks are
minimal.

The future impact in the PICU and
NICU of the various techniques presented
depends on a few key questions: How
invasive is the technique, and does it
interfere with normal care? Is there
commercially available equipment, at a price
affordable to most units? Can the procedure
be easily taught to staff? Can it be used easily
in the intubated pediatric patient to provide
continuous data? Does it improve clinical
outcomes? Based on these criteria, the most
likely bedside clinical tools in the near future
are: dynamic and passive respiratory
mechanics, volumetric capnography, EIT,
MBW, and chest wall measurements. To
date, the volumetric capnogram has been
used successfully in the measurement of
anatomical dead space, pulmonary capillary
perfusion, and effective ventilation (15).
Randomized controlled trials evaluating
routine use of capnography are needed to
evaluate associated potential improvements
in patient care.

Further technological development
of EIT hardware and software and
availability of commercial EIT devices at
a reasonable cost will likely enhance
the future clinical use of EIT. The
practicability of EIT examinations will
improve with development of electrode
belts for the smallest neonatal patients and
by increased robustness of the devices
against electrical interference. It is crucial
that EIT-derived indices relevant for
clinical decision making are available
online to clinicians. Following these
necessary steps, EIT has the potential to be
of great value in the NICU and PICU as
a bedside, noninvasive tool to monitor
changes in the distribution of lung volume
and ventilation, especially in those infants
and children receiving respiratory
support.

Potential future clinical indications
of MBW in the PICU and NICU are
dependent on widespread availability of
suitable portable low dead space
equipment and the evolving availability of
MBW as an integrated option within
ventilators and circuits. An additional
consideration is the potential impact of
leak around uncuffed endotracheal tubes
on some of these measurements. This
remains a significant issue for many of
these measures in the NICU, especially
for measures of lung volume. This
issue can be minimized with the use of
cuffed endotracheal tubes for the purpose
of the measurements of pulmonary
mechanics but may impact standard
clinical practice.

In addition, true “normal” reference
values for FRC in ventilated patients
in the PICU and NICU do not exist
and will require a large series of
measurements across a range of
gestations and postnatal ages using
standardized conditions. Equipment
needs to be able to cope with the warm,
humidified environment of a ventilator
circuit and ideally with rapid respiratory
rates. Measurements during high-
frequency oscillatory ventilation
represent a particular technical challenge
but have been achieved for FOT, EIT
(16), and chest wall measurements
(17). Adaptation of techniques for
bedside assessment of the alveolar
capillary membrane surface such as
the diffusing capacity and the diffusing
coefficient may facilitate noninvasive
measures of the pulmonary circulation
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and help achieve optimal balance
between ventilation and perfusion. In the
future, this would be an amazing
technical advance for the population of
patients in the NICU and PICU.

For chest wall measures such as TAA,
normal values for phase angles in full-
term infants and children have been
reported independent of sleep state (18,
19), but further studies will be needed to
explore whether the integration of new
and automated analysis procedures will
increase the clinical potential of TAA
monitoring in the intensive care unit.
Although there are some data on
TAA in preterm infants, there are
still inadequate normative data for
respiratory inductance plethysmography
measures in this population. Thus, we
first require preterm normative data
before studying preterm infants in the
acute phases of lung injury.

Finally, it should be stressed that more
research is warranted for each technique
before issuing detailed recommendations
on specific ages, disease entities, or
outcome measures associated with testing.
There is a requirement to develop
standardized procedures/protocols,
minimum standards for equipment, and
ideally normative data to differentiate
normal from disease states before
incorporation of a technique into our daily
clinical practice. Nonetheless, there is
already a body of experience with these
techniques as research tools, most are
noninvasive, and they can provide

additional data not easily obtained
otherwise.

Proposed Areas of Future
Research Collaboration

d For all techniques, establish “normal”
reference values using current
commercial equipment in ventilated
patients (e.g., studies of surgical patients
without respiratory disease/chest or
abdominal surgery).

d Conduct pre- and postintervention
studies (surfactant, altered ventilation
strategy, mucolytics, etc.) studying effect
on dead space using capnography and
MBW (FRC).

d Conduct randomized trials to assess if
knowledge of/discussion of routine
measures of respiratory mechanics
affects patient outcomes in the
PICU and NICU, such as length of
mechanical ventilation and/or length
of stay.

d Conduct randomized controlled trial of
patients in the PICU to evaluate the
impact of volumetric capnography on
length of ventilation, length of stay, and
cost effectiveness.

d Work with ventilator manufacturers to
incorporate appropriate measurement and
display of resistance, compliance, and
volumetric capnography in commercial
ventilators for the PICU and NICU.

d Measure oscillation mechanics during
mechanical ventilation in a large group of
patients in the PICU.

d Establish clinical protocols for the
reviewed techniques and rigorous models
for data analysis.

d Study whether the use of EIT can shorten
time to weaning from ventilation and
minimize lung injury. n
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